Visone—Analysis and Visualization of Social Networks

Jürgen Lerner

University of Konstanz

Outline

1. visone – people, purpose, history.
2. visone basics.
3. Scene 1 Juan draws a network.
4. Scene 2 José analyzes a personal network.
5. Scene 3 Jorge explores a random network.

Each scene introduces a researcher who wants to perform a specific task.

▸ We’re going to help him to do this step by step in visone; intermingled with notes on the methods applied.
Outline

1. **Visone**— people, purpose, history.

2. **Visone** basics.

3. **Scene 1** Juan draws a network.

4. **Scene 2** José analyzes a personal network.

5. **Scene 3** Jorge explores a random network.

Each scene introduces a researcher who wants to perform a specific task.

- We’re going to help him to do this step by step in visone; intermingled with notes on the methods applied.
Developed by groups at
- University of Karlsruhe (Dorothea Wagner) and
- University of Konstanz (Ulrik Brandes).
Highly involved: Michael Baur, Martin Mader, Uwe Nagel.

Main purpose: making novel network analysis and visualization techniques available to social scientists.
- Ease of use: visual creation, interaction, exploration, analysis, and representation of networks.
- Current focus on small and medium size networks.
- Convenient handling of actor and tie attributes.

Started around 2001 – gets constantly extended, improved, . . .
Visone—people, purpose, history.

Developed by groups at

- University of Karlsruhe (Dorothea Wagner) and
- University of Konstanz (Ulrik Brandes).

Highly involved: Michael Baur, Martin Mader, Uwe Nagel.

Main purpose: making novel network analysis and visualization techniques available to social scientists.

- Ease of use: visual creation, interaction, exploration, analysis, and representation of networks.
- Current focus on small and medium size networks.
- Convenient handling of actor and tie attributes.

Started around 2001 – gets constantly extended, improved, . . .
Visone—people, purpose, history.

Developed by groups at
- University of Karlsruhe (Dorothea Wagner) and
- University of Konstanz (Ulrik Brandes).
Highly involved: Michael Baur, Martin Mader, Uwe Nagel.

Main purpose: making novel network analysis and visualization techniques available to social scientists.
- Ease of use: visual creation, interaction, exploration, analysis, and representation of networks.
- Current focus on small and medium size networks.
- Convenient handling of actor and tie attributes.

Started around 2001 – gets constantly extended, improved, . . .
Getting it, installing it, running it.

Import, export.

Network model.

Overview of analysis and visualization methods.
Visone—getting it, installing it, running it.

http://visone.info/

Requires Sun Java Runtime Environment (JRE) 6 (http://java.sun.com/)

Works on Windows, Linux, Unix, MacOS, ...

Running: either

- click on webstart visone or
- download visone-2.5.jar and execute it (e.g.) by double-clicking.
import, export.

Import and export **network**-formats
- GraphML – main format, in XML
- UCINET, Pajek, (Siena)
- adjacency matrix in `.txt` or `.csv`
- GML, LEDA GraphWin, (centering resonance analysis)

Export **image**-formats
- PNG, JPEG, GIF, BMP, SVG, PDF, ...
- printing

⇒ visone
Visone—network model.

- **mixed multigraph:** (un-)directed, multiple ties
- **actor and tie **attributes:** properties, numerical indicators, ...
- **confirmed and un-confirmed ties**
Confirmed and un-confirmed ties.

“Name your best friends.”

Friendship (symmetric relation) encoded in black lines.

- B names A and A names B.
- C names A and A names C.
- D names A, but A does not name D.

- inconsistencies often treated as “error”
- might encode valuable information
- do not “correct” it
Overview of visualization methods.

General purpose: draw networks to visualize structure.
 - MDS, stress minimization, spring embedder, spectral, circular, random.
 ⇒ quick layout button

Show properties: draw networks to emphasize attributes.
 - **map attributes** to color, size, shape, width, ...
 - **centrality** layouts (draw central actors in the center)
 - **status** layouts (draw high status actors on top)

Geometric transformation
 - rotate, translate, scale, reflect.
 ⇒ visone
Comparison of visualization methods.

- General purpose
- Centrality layout
- Status layout
Overview of analysis methods.

Indexing: computing properties of actors and ties.
- node and link centrality: degree, eigenvector, betweenness, closeness, status, page rank, ...
- density: clustering coefficient
- distance to selected actors

Grouping: computing groups of actors (in development)
- clustering (groups of densely connected actors)
- role equivalence (groups of similar actors)

Modeling (SIENA) (new feature)

⇒ visone
1. Visone—people, purpose, history.

2. Visone basics.

⇒ Scene 1 Juan draws a network.

3. Scene 2 José analyzes a personal network.

4. Scene 3 Jorge explores a random network.
Scene 1 Juan draws a network for presentation.

Scenario: Juan writes a term paper on **regular equivalence**.

For the presentation he wants to illustrate this concept on a small example network.
An network image helps understanding.

A vertex-coloring \(c : V \rightarrow C \) is *regular* for a graph \(G = (V, E) \) if

whenever two vertices \(u \) and \(v \) have

the same color

and one of them is connected to

another vertex \((u, w) \in E \)

then \(v \) is connected to a vertex \(w' \)

that has the same color as \(w \)

Such images can easily be created with \textsc{visone}.

Wasserman/Faust (1994)
Wrapping up.

- To create a small network that you have in mind, chose the new empty network option.
- Nodes and lines can be created in edit mode by use of the mouse – node and line templates can be defined.
- Node and tie indices are computed internally – can be mapped to visual characteristics.
- Export in various image formats is supported.
Intermezzo – different notions of role equivalence.

structural

connected to the **same** others

exact regular

connected to the same number of **equivalent** others

regular

connected to **equivalent** others
Outline

1. Visone—people, purpose, history.
2. Visone basics.
3. Scene 1 Juan draws a network.
4. Scene 3 Jorge explores a random network.
 ⇒ Scene 2 José analyzes a personal network.
Scene 2 José analyzes a personal network.

Scenario José collected many personal networks containing various actor attributes.

⇒ visual exploration and analysis in Visone.
Wrapping up.

Collected node and link attributes can be
 ▶ used to define classes of actors and ties;
 ▶ mapped to color, shape, label, size, ...
 ▶ exported to attribute tables (.csv) for further analysis.

Network indices (e.g., centrality) again define attributes
 ▶ are computed internally and can then be treated as any other attributes (mapping to visual properties, ...).
Intermezzo – centrality measures in networks.

degree indegree, outdegree

shortest path centralities
closeness, current flow closeness, betweenness, current flow betweenness, radiality, stress, eccentricity

feedback centralities (eigenvector)
eigenvector, hubs & authorities, PageRank, Katz’ status
Degree centralities.

- **degree**: number of lines connected to a node
- **indegree**: number of *incoming* lines connected to a node
- **outdegree**: number of *outgoing* lines connected to a node
Shortest path centralities.

betweenness: being on shortest paths between alters

closeness: short distance to alters

current flow betweenness: high throughput of electric current (also called information centrality)

current flow closeness: small potential difference when seen as an electric network

⇒ visone
Shortest path centralities.

betweenness: being on shortest paths between alters

closeness: short distance to alters

current flow betweenness: high throughput of electric current (also called *information centrality*).

current flow closeness: small potential difference when seen as an electric network

⇒ Visone
Feedback centralities.

Idea: node important if connected to (many) important others.

- **eigenvector** of adjacency matrix
- **page rank**: stable distribution in a random surfer model
- **hubs & authorities**: a strong hub points to many strong authorities; a strong authority is pointed at by many strong hubs
- **Katz’ status**: nodes give status to nodes they point at – directly or indirectly

⇒ visone
Feedback centralities.

Idea: node important if connected to (many) important others.

eigenvector of adjacency matrix

page rank: stable distribution in a random surfer model

hubs & authorities: a strong hub points to many strong authorities; a strong authority is pointed at by many strong hubs

Katz' status: nodes give status to nodes they point at – directly or indirectly

⇒ visone
Intermezzo – network visualization methods.

- **stress minimization** – drawing short paths straight (MDS)
- **spring embedder** – equilibrium of physical forces
- **spectral** – minimizing edge lengths
- **classical MDS** – spectral approach to MDS
- **circular** – arrange on circle, minimizing crossings
- **random** – *no comment*
Stress minimization.

distance between nodes should correspond to graph distance ... especially for close nodes; started by the quick layout button

⇒ visone
Spring embedder.

physical analogy: nodes repulse each other and edges have a preferred length (like springs);
layout determined by equilibrium state

$\Rightarrow \text{visone}$
Spectral.

coordinates determined by eigenvectors of graph-matrices;

Laplacian: minimizing sum of squared edge lengths;

adjacency: draw nodes close if connected to the same others (structural similarity);

$$\Rightarrow \text{visone}$$
Classical MDS.

distance between nodes should correspond to graph distance;
best two-dimensional representation (computed by spectral means)

⇒ visone
Circular.

nodes arranged on a circle;
ordered such that crossings are reduced;

$\Rightarrow \text{visone}$
Outline

1. Visone – people, purpose, history.
2. Visone basics.
3. Scene 1 Juan draws a network.
4. Scene 2 José analyzes a personal network.
⇒ Scene 3 Jorge explores a random network.
Scene 3 Jorge explores random networks.

Scenario Jorge computed betweenness centrality on some network (dark nodes: more central).

He’s wondering whether the observed centralization is higher than one would expect randomly.

⇒ random network generation in Visone.
Wrapping up.

- Random networks from various distributions can be generated via the create network option.
 - (uniform) just varying density
 - (preferential attachment) skewed degree distribution
 - (small world) local clustering, small diameter, little degree variance
 - (planar) rare for social networks

- Node attributes (e.g., centrality) are computed internally
 - (a) mapping of attributes to visual characteristics
 - (b) export of attribute tables (.csv) for further analysis
Intermezzo – random graph distributions.

uniform random graphs no structure at all

preferential attachment “the rich get richer”

small world locally clustered, small diameter
Uniform random graphs $G(n, p)$

Generating process
1. fix a number n of nodes;
2. independently include edges $\{1, 2\}$, $\{1, 3\}$, \ldots, $\{n - 1, n\}$ with the same probability p.

Very little variation in degrees, no clusters, small diameter, \ldots
Generating process

1. insert nodes v_1, \ldots, v_n one by one;
2. each node v_i chooses d neighbors in $\{v_1, \ldots, v_{i-1}\}$
3. \ldots with probability proportional to their current degree.

Enormous variation in degrees, small diameter, \ldots

\Rightarrow visone
Small worlds.

Generating process

1. circularly connect nodes with the k next neighbors
2. rewire each edge with probability p

Little variation in degrees, local clustering, small diameter if p is sufficiently large, ...
That’s it!